Springs Old Exam Questions

Q1. A spring has a stiffness of 125 N m⁻¹. Calculate the extension of the spring when a weight of 8.0 N is suspended on it. Give your answer in metres.

extension of spring m
(Total 2 marks)

Q2. A load of 3.0 N is attached to a spring of negligible mass and spring constant 15 N m⁻¹.

What is the energy stored in the spring?

A 0.3 J B 0.6 J C 0.9 J D 1.2 J
(Total 1 mark)

Q3. A load of 4.0 N is suspended from a parallel two-spring system as shown in the diagram.

The spring constant of each spring is 20 N m⁻¹. The elastic energy, in J, stored in the system is

A 0.1 B 0.2 C 0.4 D 0.8
(Total 1 mark)
Q4. The diagram below shows a lorry of mass 1.2×10^3 kg parked on a platform used to weigh vehicles. The lorry compresses the spring that supports the platform by 0.030 m.

![Diagram of a lorry on a platform, with a spring compressed]

Calculate the energy stored in the spring.

Gravitational field strength $g = 9.8 \text{ N kg}^{-1}$

Energy stored = ...

(Total 3 marks)

Q5. The diagram shows a metal rod suspended in a magnetic field by two vertical conducting springs. The cell and rod have negligible resistance. When the switch S is closed the effect of the magnetic field is to displace the rod vertically a distance y.

![Diagram of a metal rod suspended by springs, with a magnetic field]

When both the spring constant and electrical resistance of each spring is doubled, closing the switch would now cause the rod to be displaced a distance A

A $\frac{y}{2}$

B $\frac{y}{4}$

C y

D $4y$

(Total 1 mark)
Q6. The diagram below shows a laboratory experiment to test the loading of a uniform horizontal beam of weight W. The length of the beam is 1.50 m. The load, M, has a weight of 100 N and its centre of mass is 0.40 m from the pivot. The beam is held in a horizontal position by the tension, T, in the stretched spring.

(a) Add clearly labelled arrows to the diagram above so that it shows all of the forces acting on the beam.

(b) The tension, $T = 36$ N. Calculate the moment of T about the pivot.

Moment

(c) Calculate the weight, W, of the beam.

Weight W

(Total 7 marks)

Q7. A type of exercise device is used to provide resistive forces when a person applies compressive forces to its handles. The stiff spring inside the device compresses as shown in the figure below.
(a) The force exerted by the spring over a range of compressions was measured. The results are plotted on the grid below.

(i) State Hooke's law.

..
..

(ii) State which two features of the graph confirm that the spring obeys Hooke's law over the range of values tested.

..
..

(iii) Use the graph to calculate the spring constant, stating an appropriate unit.

answer =

(3)

(b) (i) The formula for the energy stored by the spring is

\[E = \frac{1}{2} k \Delta \ell \]
Explain how this formula can be derived from a graph of force against extension.

(ii) The person causes a compression of 0.28 m in a time of 1.5 s. Use the graph in part (a) to calculate the average power developed.

\[
\text{answer} = \text{..................................W}
\]

Q8. Heavy duty coil springs are used in vehicle suspensions. The pick-up truck shown in the diagram below has a weight of 14 000 N and length of 4.5 m. When carrying no load, the centre of mass is 2.0 m from the rear end. The part of the vehicle shown shaded in grey is supported by four identical springs, one near each wheel.
(a)

(i) Define the moment of a force about a point.

...
...
...
...

(2)

(ii) State and explain which pair of springs, front or rear, will be compressed the most.

...
...
...
...

(2)

(iii) By taking moments about axle B, calculate the force exerted on the truck by each rear spring.

answer = N

(4)

(b)
The spring constant for each of these springs is 100 000 N m\(^{-1}\).

Calculate the distance that each of these rear springs is compressed by this vehicle as shown in the diagram above.

answer = m

(2)
(c) The springs must not be compressed by more than an additional 0.065 m. Calculate the maximum load that could be placed at point X, which is directly above the centre of the rear axle A, as shown in the diagram above.

answer = N

(2)
(Total 12 marks)
ANSWERS

M1. correct substitution into \(F = k \Delta L \) (condone power 10 error)

\[0.064 \text{ (m)} \] [2]

M4. use of \(mg \) with \(g = 9.8 \) [use of \(g \) 10 – 1]

\[\text{energy} = \frac{1}{2} Fl = \frac{1}{2} (1200 \times 9.8) \times 0.03 \]

\[= 180 \text{ J [176]} \text{ [omission of } g \text{ will score only 1]} \] [3]

M5. B [1]

M6. (a) two correct weight arrows with labels (100N, W)

arrows must act on beam (horiz. scope: M, 50 m respectively)

normal reaction arrow at pivot point (with label) [BI]

(b) Use of 36 \(\times \) a distance

\[\text{moment} = 43.2 \text{ Nm} \quad (36 \times 1.3 = 46.8) \] [C1]

\[= 180 \text{ J [176]} \text{ [omission of } g \text{ will score only 1]} \] [3]

M7. (a) (i) \(F \propto \Delta L \) up to limit of proportionality (1)

accept ‘elastic limit’

\[F = k \Delta L \text{ with terms defined gets first mark} \] 2

(ii) straight line (1) through origin (1) 2

(iii) working shown and \(F \geq 200 \text{ N (1)} \) \((500/0.385) = 1290 \pm 20 \) (1)

\[\text{N m}^{-1} \text{ or N/m kg s}^{-2} \text{ (1)} \] 3
(b) (i) \(\Delta W = F\Delta s\) so area (beneath line from origin to \(\Delta L\)) represents (work done or) energy (to compress/extend) (1)

work done (on or by the spring) linked to energy stored (1)

\[
\frac{1}{2} b \times h \quad \text{(area of triangle)} = \frac{1}{2} (\therefore E = \frac{1}{2} F\Delta L) (1)
\]

(ii) \(F = 360 \text{ (N)}\) used (1)

\[
P = \frac{\frac{1}{2} \times (360) \times 0.26}{1.5} = \frac{50.4}{1.5} (1) = 34 (33.6) \text{ (W)} (1)
\]

ecf from wrong force

M8. (a) (i) force \(\times\) perpendicular distance (1)

between line of action of force and the point (1)

(ii) rear (1)

at rear + idea that centre of mass is closer to the rear wheel (than to the front wheel) (1)

(iii) \(14000 \times 1.4 = F \times 2.5 (1)\)

\(F = 7840 \text{ (N)} (1)\)

divides their final answer by 2 (1)

\(= 3900 \text{ (N)} (1) (3922)\)

\[
F \quad \text{(a)(ii)}
\]

(b) \((F = k\Delta l)\) \(k\) or \((\Delta l =) 100000 \quad (1)\)

\(= 0.039 \text{ (m)} (1)\) ecf

(c) \(F = (100000 \times 0.065 =) 6500 \text{ (N)} (1)\)

\(F = (2 \times 6500) = 13000 \text{ (N)} (1)\)